
Published in Solar Physics, vol 168, n°2, pp. 423-433, 1996

COMPARISON OF NEURAL NETWORK AND McNISH AND LINCOLN METHODS FOR
THE PREDICTION OF THE SMOOTHED SUNSPOT INDEX

Françoise FESSANT France Telecom/CNET, Departement LAB/RIO/TNT, 22307 Lannion
Cedex, France

Catherine PIERRET CNES, Department CT/TI/MS/MO, 18 Avenue Edouard Belin, 31055
Toulouse Cedex, France; and Observatoire de Meudon, 92195 Meudon Cedex, France

Pierre LANTOS Observatoire de Meudon, 92195 Meudon Cedex, France

Abstract.

In this paper we propose a comparison between two methods for the problem of long-term
prediction of the smoothed sunspot index, These two methods are first the classical method of
McNish and Lincoln (as improved by Stewart and Ostrow), and second a neural network method.
The results of these two methods are compared in two periods, during the ascending and the
declining phases of the current cycle 22 (1986-1996). The predictions with neural networks are
much better than with the McNish and Lincoln method for the atypical ascending phase of cycle
22. During the second period the predictions are very similar, and in agreement with
observations, when the McNish and Lincoln method is based on the data of declining phases of
the cycles.

1. Introduction

The prediction of solar activity is of importance for many applications. Space technology needs it
to predict satellite orbit, lifetime and shielding. Space manned flights in high-inclination orbits or
in trajectory outside the protection of the Earth's magnetic field need monitoring as well as
prediction of solar activity. Radio communications, electric power and cable network operations
and pipeline maintenance could also be disturbed by solar activity (Lanzerotti, 1983). The
predictions are sometimes source of important scientific progress, such as the work done by Ohl
(1966, 1976), which has been at the origin of the now widely accepted concept of the extended
solar cycle (see, for example, Wilson, 1994).

Long-term predictions (months or years ahead) are frequently applied to the smoothed sunspot
index (RI12), in fact a 13-month running mean of RI, or to the formally equivalent centimeter flux
at λ = 10.7 cm. A number of methods have been developed (see Denkmayr, 1994, for a
comprehensive analysis). Cycle prediction covers two different parts: the prediction of the future
evolution ofthe cycle in progress, and the prediction of the following cycles. Both are dealing
with different methods, and we consider here only the prediction of the current cycle. We
describe first the method proposed by McNish and Lincoln (1949) and improvements of it
proposed later. This regression method is considered as one of the best (Hildner and Greer,
1990), and it is in operational use in forecasting centers. We then describe a method developed at
Lannion French National Telecommunication Research Laboratory (CNET) using neural



Figure 1 : Comparison of predictions with the McNish and Lincoln method (+) and observations ( ���IRU
cycle 11. The mean cycle is also indicated with a dotted curve

networks (Fessant, 1995). Neural networks are successfully used in various fields and are well
suited to resolve problems of solar-terrestrial predictions (Gorney, Koons, and Waltersheid, 1993;
Lundstedt, 1993), for which many examples are available but not the equations that govern the
system. Recently neural networks have been used for solar cycle prediction by Koons and Gorney
(1990), McPherson (1993), and Tian (1996). Both methods have been implemented, and
comparison is made of their results for the rising part and for the declining part of cycle 22,
which started in September 1986.

2. The Improved Method of McNish and Lincoln

A formula for predicting the smoothed annual sunspot numbers was published by McNish and
Lincoln in 1949. A first approximation to the prediction of a future value in a cycle is the mean of
all past values for that part of the cycle. This estimate can be improved by adding to the mean a
correction factor proportional to the departure of earlier values to the cycle from the mean cycle.
The correction factors are determined by the method of least squares. Sunspot data for 1834
though 1943 (cycles 8 to 17) were used, and for statistical reasons data of cycles 1 to 7 are not
used for this analysis. After tests, McNish and Lincoln decided to employ only the mean value,
corrected by the departure of the mean sunspot index of the preceding year for prediction of
future smoothed annual sunspot indices.

This method has been greatly improved by Stewart and Ostrow in 1970. Indeed, they have
described an adaptation of the McNish-Lincoln technique to sunspot data spaced at monthly
intervals, which allows the prediction of monthly mean values. In their procedure, the effect of
short-term fluctuations in the monthly mean values is minimized by the use of 12-month running
means of the index. It is necessary with this method to use an extra six months extrapolation
when predictions of this smoothed index are being made.

The hypotheses used in the Stewart and Ostrow method are:
(a) The independence of individual cycles.
(b) All the cycles observed since 1749 (the minimum of cycle 1 is in March



Figure 2 :  Comparison of observations ( �� ZLWK� SUHGLFWLRQV� RI�0F1LVK� DQG� /LQFROQ�PHWKRG� ZKHQ� WKH
cycle is separed into two phases (+). The dotted curve is the mean cycle in this case.

1755) belong to the same statistical population. This is the first important difference from the
McNish - Lincoln method.
(c) The step size used for the prediction method is one month. This is the second difference with
the McNish-Lincoln method, in which the predictions are made one year in advance.

The method implemented follows the approach of Holland and Vaughan (1984)
for the computation of the mean cycle. The steps of the implementation are:
- the mean period (P months) of cycles I to 21 (or 8 to 20 because the result is similar) is
calculated;
- each cycle is resampled at P + 1 points (at the same phase of each cycle), by means of an
interpolation technique; thus, each cycle has the same length.

Note that by attributing the mean period to the current cycle we infer the minimum date of
October 1997 for cycle 22. A mean cycle is computed based on the resampled values. The
prediction of a future value in the current cycle k (xj,k. where j is the month) is the mean of all
past values for that part of the cycle Xj,k-l, (the mean cycle value in the month j) added to a
correction proportional to the difference between the earlier value of the same cycle k (x j - 7 ,k on
account of the ~ix month’s delay) and its respective mean xj-7,k-l:
a1 (xj-7,k - Xj-7,k-1 , where a1 is obtained by minimizing χ2.

To test the performance of this method, the scheme has been applied to a prediction over all the
cycles (1 to 21); we calculate for each cycle the standard jeviation for the predicted values against
the observed, giving a standard deviation ) of 2.3 (mean is 7.56). This is in satisfactory agreement
with the observations. Figure 1 shows the predicted results of cycle 11 compared with the
observations and the mean cycle. Another change, already used in the Boulder Warning Center
:Greer, 1993), has been implemented, which still improved the preceding one. Sunspot cycles
have an average length of about 11 years, but their duration can vary from 8 to 13 years. Their
amplitude can also be very different. So, on account of this , variability, the idea is to cut the
cycles at the time of maximum. We have now two half-cycles (an ascending phase and a
descending phase ) for each cycle. The method of McNish and Lincoln is applied to each half-



Figure 3 : A simple neural network with one hidden layer of units where all units in one layer are
connected to all units in the next layer

cycle. A mean ascending phase is computed based on the resampled values according to the mean
period P1 (the average ascending time from minimum to maximum is approximately 50 months)
and a mean descending phase is computed based on the resampled values according : to the mean
period P2 (the average descending time from maximum to minimum is about 80 months). The
inferred minimum date for the current cycle in this case is March 1996. When we separate the
ascent and the descent, the predictions over all the cycles are better, especially for the declining
phases of the cycles. The standard leviation of the sum of all the half-cycle standard deviations
for the predicted values against the observed is 2.5 for the ascending phases (mean is 7.41) and
1.9 for the descending phases (mean is 5.52). Figure 2 shows the predicted results of cycle 11
compared with the observations and the mean descending cycle by using his ’cut at maximum’
method.
Nevertheless the method of McNish and Lincoln presents some difficulties. It requires that the
month of the last solar minimum be known. Because it uses a number of months after a minimum
to ensure that the minimum identified is the real one and not just a subsidiary phenomenon, it is
obvious that there will be a significant delay before predictions can commence at the beginning
of a cycle. This delay will have to be added to the time-lag created by the forward prediction
period and to the extra six months involved. Another difficulty may arise at the end of the cycle if
the current cycle is longer than the reference average cycle. If there are no reference data for long
cycles, no predictions are possible. Thus, unless modifications to the standard procedure are
introduced, predictions cannot be produced in this case for the months around the minimum
epoch.

3. Neural Network for Prediction

The prediction problem consists, given the first n values of a one variable time series {xl, ..., xn},
in finding the future values {xn+l, xn+2, .. .}, where xt is the series value sample at time t. It has
been shown by Takens (1981) that if the series is deterministic, there exists an integer d (called
the embedding dimension), an integer δ (a delay) and a function f such that for every t > dδ

Xt = f(Wt-δ, xt-2δ, ... , xt-dδ) .

Neural networks, which can be used as universal function approximators, are used to approximate
the function f.
Neural networks consist of a large number of highly connected, nonlinear, simple units. In the
models used in predictions we can distinguish 3 types of units:



Figure 4 :  Comparison of observations for the ascending phase of cycle 22 (curve I), with predictions
obtained with the McNish and Lincoln method: using the entire cycle (curve 2) or the ascending phase of
cycles (curve 3) and with neural network (curve 4).

- Input units which are set to the previous value of the time series xt-δ, xt-2δ, . . , xt-dδ, where
d is the embedding dimension.

- Output units which give the results of the neural network. In the simplest case,
we have only one output unit which should return xt.

- Finally, hidden units which are neither input nor output units, but are used to
keep an internal representation of the problem.
Each connection between two units is directed and is given a weight. In fact, the knowledge of
the network is kept in these weights. Each hidden and output unit computes its value as the
weighted sum of its inputs, passed through a nonlinear function such as hyperbolic tangent.
The idea then is to find, for a given network architecture and a given time series, the weights that
minimize a cost which is a function of the difference between the resulting values of the network
and the desired values. The time series is generally divided into two parts: a training set and a test
set. The training set (for instance the first values of the time series) is used to find the weights by
minimizing a cost function, whereas the test set (for instance the last values of the time series) is
used to verify the real prediction performance of the network. The most widely used cost function
is the least mean-square criterion and the minimization of this cost function is usually done by an
iterative procedure which consists of the following steps: first initialize the network weights
randomly, then for each example in the raining set, compute the network output while feeding the
example as input, compare the resulting output to the target, and apply a correction to all weights
vhich minimize the error. One iteration is the presentation of all examples. The procedure could
last many iterations. The most widely known learning mechanism or neural networks is the back
-propagation rule (Rumelhart, Hinton, and Williams,1986). It is a simple gradient descent
technique, which minimizes the cost function in the weight space.

One of the most important features of learning systems is their ability to generalize to new
situations. As we have seen, a learning machine such as a neural network is usually trained to



Figure 5 : Comparison of observations for the declining phase of cycle 22 (curve I) with predictions
btained with the McNish and Lincoln method: using the entire cycles (curve 2) or the decreasing hase of
cycles (curve 3) and with neural network (curve 4).

minimize a cost function over a finite set of examples (the training set), but what we are really
interested in is to find a function which minimizes our cost function over all the input domain.
Particulary, in prediction problems, we train the network with past examples (thus we minimize a
training error) but we really want our network to perform well on future examples (thus, have a
minimal generalization error. We usually use a test set (data not used to minimize the cost) to
estimate the generalisation error. Theoretical results such as Vapnik (1982) show that the smallest
generalization error we can reach is a function of the training set size, the network capacity
(which is roughly a measure of the number of free parameters), and the training error. This means
that we have to find the best network architecture for a given problem and a given training set
size. Many heuristics exist (Fahlman and Lebiere, 1990; LeCun et al., 1990) but it is still a hard
problem.

The parameters of the neural network model, i.e., embedding dimension d (or input size of the
network), as well as the hidden layer size are usually set by cross validation techniques. The
training set (for instance the first values of the time series) is cut into two parts: a new training set
and a validation set. Different network models (and more specifically different input size
networks) are trained with this new training set; an error on the validation set is computed for
each model and these validation errors are compared. We keep the best model (i.e., the model
which has the lowest error in the validation set). The input dimension of this model is then a good
estimate of the embedding dimension d. For more information about neural networks, see for
instance (Hertz, Krogh, and Palmer, 1991).

In this application, we want to predict a future value of the RI12 index in a long range horizon.
To solve this problem, we use iterated prediction. This consists in feeding the previously
predicted values Xt, Xt+l, Xt+l-1 as inputs of the network to predict Xt+l (if t is the prediction
horizon desired). We do not know the exact values of xt, xt+l, xt+l-1, so we use the ones estimated
by the network, given the known past values.



The model we use is a simple multilayer perceptron with one hidden layer and one output, trained
by the stochastic version of the back-propagation algorithm. All input units are connected to all
hidden units, and all hidden units are connected to the output unit. There is no connection
between input and output units (Figure 3).

4. Comparison of the Results of Both Methods

4.1. PREDICTION OF THE ASCENDING PHASE OF CYCLE 22

We compared the different methods proposed in this paper on the prediction of the ascending
phase of cycle 22. First, the McNish and Lincoln method used the data of entire cycles (case 1).
Then, it used only the data of ascending cycles (case 2). The assumed last known monthly value
is for July 1988. The prediction of the cycle starts in August 1988. With regard to the neural
network method, RI12 from 1849 to July 1988 are used to train the model (training set). The data
are normalized between [-1, 1] (this is a necessary step for neural networks to perform well). The
prediction is made from August 1988 to September 1991 (39 values in the test set). The network
is trained starting from initial random weights and the training is stopped using a cross validation
method. The best network has 43 input units, 8 hidden and one output unit. We are not able to
obtain good predictions with fewer input units, not enough information being present in the
inputs. The parameter 6 is set arbitrarily to one. Hidden and output units use a nonlinear function:
a hyperbolic tangent. We choose a nonlinear function on the output unit instead of a linear
function after several trials.

Figure 4 shows the resulting curves, compared with the observed values (curve 1). Curve 2 is the
result when the McNish and Lincoln method used the data of entire cycles (case 1). Curve 3 is
when only the data of the ascending phase of cycles are used (case 2). The prediction based on
the neural network method (curve 4) is found to be much better than the McNish and Lincoln
methods for this period. The predicted maximum of RI12 is 154 and the predicted date is July
1989, both very close to the observed parameters (equal to 158 and July 1989, respectively). With
the McNish and Lincoln methods, the dates of predicted maxima are February 1990 when entire
cycles are used, and September 1990 in the other case. The maxima are overestimated and in both
cases equal to 190.

The neural networks give no information on the reasons of success or failure. With the McNish
and Lincoln method, poor results could at least be explained. The length of the cycle in case 1
and the length of the ascending phase in case 2 are parameters given by the average
characteristics of the past cycles. When a cycle has an unusually short ascending phase, like cycle
22, the predicted maximum is obviously late. On the other hand, because of the statistical
relationship between the rate of increase of the ascending phase and the maximum of the sunspot
index (implicitly included in McNish and Lincoln method), the methods based on the former
parameter to predict the second have failed for cycle 22 because of the unusually rapid growth of
this cycle. Indeed, Lantos (1990) using a method based on the slope at the ascending inflexion
point of the RI12 curve, finds 190 ± 28 (r.m.s.) with data from the minimum to July 1988, and
Wilson (1990) find 185 ± 10 when using the annual rate of growth and 175 ± 30 when using the



maximum value of the difference in month-to-month smoothed RI, with data from the minimum
to February 1989. Note that another attempt to predict the maximum sunspot index for the same
cycle, using a neural network (Koons and Gorney, 1990), finds a similarly high value (194 ± 26).
Koons and Gorney also use a multilayer perceptron with one hidden layer of units, but the
methodology is different. They try directly to predict the maximum value of the cycle and the
number of months from sunspot minimum to maximum and are not interested in predicting
intermediate values for the ascending phase of the cycle. Their neural network has 33 inputs (3
month moothed sunspot numbers for the first 33 months of cycle 22, 17 hidden units, 2 outputs
(one output unit for the maximum value and the other one for the number If months from
minimum to maximum).

4.2. PREDICTION OF THE DECLINING PHASE OF CYCLE 22

We compared the different methods proposed in this paper of the prediction of the declining
phase of cycle 22. First, the McNish and Lincoln method used the data of :ntire cycles (case 1).
Then, it used only the data of descending cycles (case 2). The assumed last known monthly value
is August 1991. The prediction of the end of l1e cycle starts in September 1991. With regard to
the neural network method, RIl2 rom 1849 to August 1991 are used to train the model. The
prediction is made from ~eptember 1991 to November 1994 (39 values in the test set). The best
network we found (by a cross validation method) has 43 input units, 12 hidden and one output
unit.

Figure 5 gives a comparison of the different predictions with the observed values (curve 1). The
results with the entire cycles are given on curve 2. The results with McNish and Lincoln (case 2,
curve 3) and with the neural network (curve 4) are in excellent agreement with observations.
Cycle 22 as a whole is shorter than average due to a very short ascending phase of less than two
years compared with four years. This explains why the results are better when the declining phase
(which will have a duration of at least seven years) alone is taken into account.

The Average Relative Variance is the error test to compare the predictions with the test set:

where σ2 is the estimated variance of all data, P is the test set, n is the test set size, Xi is the ith

predicted value and xi the corresponding desired value.

Table I gives a comparison of the Average Relative Variance for both ascending phase and
declining phase, as obtained with the different methods.



5. Conclusion
As already shown by MacPherson (1993), who applies to predictions of cycles 20, 21 and to
beginning of cycle 22 the technique of neural networks and compares statistically the results with
those of the McNish and Lincoln method, the former method could provide better predictions of
the smoothed sunspot index than the second. We have attributed this advantage to the greater
flexibility of the neural networks regarding the duration of the cycle or of the different phases of
the cycles. In this respect, the atypical ascending phase of cycle 22 provides a good example. It is
likely that the difference between the McNish and Lincoln method and the neural network
technique will be systematically less important for cycles with more standard profiles, like cycle
11 illustrated in Figures 1 and 2 of the present paper.
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